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Abstract

The paper presents analytical and numerical investigations of a system of unbalanced flexible rotating shaft equipped

with n automatic ball-balancers, where the unbalanced masses are distributed in the length of the shaft. It includes the

derivation of the equations of motion, the stability analysis on the basis of linearized equations of motion around

the equilibrium position, and the results of the time responses of the system. The Stodola–Green rotor model, of which the

shaft is assumed flexible, is proposed for the analysis step. The rotor model includes the influence of rigid-body rotations,

due to the shaft flexibility. Utilizing Lagrange’s method, the nonlinear equations of motion are derived. The study shows

that for the angular velocities more than the first natural frequency and selecting the suitable values for the parameters of

the automatic ball-balancers, which are in the stability region, the auto ball-balancers tend to improve the vibration

behavior of the system, i.e., the partial balancing, but the complete balancing was achieved in a special case, where the

imbalances are in the planes of the auto ball-balancers. Furthermore, it is shown that if the auto ball-balancers are closer to

the unbalanced masses, a better vibration reduction is achieved.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Imbalance in rotating machines is a common source of the vibration excitation. For a rotor with a constant
unbalanced mass, only one-time balancing is sufficient. However, if the rotor has variable unbalanced mass
depending on the running conditions, balancing of the rotor cannot be achieved by only one-time balancing.
For this reason, automatic ball-balancer (ABB) is used to reduce the unbalancing effects in rotating machines,
such as washing machines, turning lathes, etc. ABB is a device for eliminating the variable imbalance of
rotating machines automatically. It is usually composed of a circular disk with a groove, or race, containing
spherical or cylindrical weights and a low viscosity damping fluid.

Many researches have been conducted in the field of auto balancers since 1930 but they have not been so
remarkable relative to other balancing topics. Initial researches were established by Thearl [1,2], Alexander [3]
and Cade [4]. Experimental and analytical analysis of auto balancers for non-autonomous systems can be
found in Refs. [5–7]. Chung and Ro [8] studied the stability and dynamic behavior of an ABB for the Jeffcott
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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rotor. They consider an autonomous system by utilizing the polar coordinate system, and so they did the
stability analysis in a better way relative to the previous researches. Hwang and Chung [9] applied this
approach to an ABB with double races. Sperling and his co-workers considered the analytical and numerical
investigations of a two-plane automatic balancing device for equilibration of rigid-rotor imbalance [10].
Chung and Jang studied the dynamic stability and the time responses for an ABB of a rotor with a flexible
shaft. They utilized the Stodola–Green rotor model, of which the shaft is flexible; their model was able to
include the influence of rigid-body rotations due to the shaft flexibility [11]. Chao, Huang and Sung presented
the non-planar dynamic modeling and analysis of the spindle–disk system equipped with an automatic ball-
type balancer system for optical disk drives [12]. In another paper, Yang and his co-workers investigated the
influence of friction in an automatic ball balancing system [13].

Kim, Lee and Chung analyzed the dynamic behavior and stability of an ABB in an optical disk drive based
on the proposed three-dimensional dynamic model [14]. Rajalingham and Bhat investigated the suitability of a
two-ball automatic balancer to balance the residual unbalance in a vertical rotor [15]. Green, Champneys and
Lieven presented a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing
mechanism for rotating machines [16]. Lu and Hung studied the dynamic characteristics of a three-ball
automatic balancer and considered the effects of the number of balls on the stability of the system [17]. Cheng
and his co-workers proposed a novel design of a vibration absorber for reducing the vibration caused by the
imbalance of an optical disk drive. They designed and analyzed the auto balancer of an optical disk drive using
speed-dependent vibration absorbers [18]. Rodrigues and his co-workers presented an analysis of a two-plane
automatic balancing device for rigid rotors [19].

In this study, the stability and time responses for a system of unbalanced flexible rotating shaft equipped
with n ABBs, where the unbalanced masses are distributed in the length of the shaft are analyzed. It must be
noted that in almost all the previous researches the rotor model is Jeffcott. Since the Jeffcott rotor
model is basically a particle or point–mass representation, this model is inadequate to explain rigid-body
characteristics caused by the flexibility of a rotor shaft [20]. Therefore, in order to analyze the dynamics of the
system, the Stodola–Green rotor model [21,22] is adopted instead of the Jeffcott model. Also, in this research,
auto ball balancing in multiplane is considered despite other studies whose focus has been on single plane
balancing.
2. Nonlinear equations of motion

The Stodola–Green rotor model with n ABBs is shown in Figs. 1 and 2, where the flexible rotor is installed
on two elastic supports. It is assumed that the shaft mass is negligible compared to the mass of other elements
and the shaft is slender. The slender beam implies that the Euler–Bernoulli beam theory is applied when
driving the equations of motion. Furthermore, the internal damping of the shaft is relatively smaller than the
damping in the bearings, and so it can be neglected. The XYZ coordinate system is a space fixed inertia
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Fig. 1. A flexible rotor with discrete distributed unbalance masses, equipped with n ABB.
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Fig. 2. The front view of the flexible shaft equipped with ABBs, and the positions of the ABBs and unbalanced masses.
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Fig. 3. Configuration of ith ABB in the Stodola–Green rotor model: (a) the configuration of the balancer after rotation of only ot; (b) the

configurations of the other Euler angles abi and bbi [11].
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reference frame and the points Gi and GCi in Fig. 3 are the mass center and centroid of the ith rotor,
respectively. The ABB consists of a circular rotor with a groove containing balls and a low viscosity damping
fluid. The balls move freely in the groove and the rotor spins with an angular velocity of o. Since the deflection
of the shaft is generally small, it may be assumed that the centroid GCi moves in the XY-plane. In Fig. 1, there
are n ABBs, Bi is the index for the ith balancer. As shown in Fig. 1, there are k1, k2 and ki�1 number of point
unbalanced masses, between balancer 1 and 2, balancer 2 and 3 and balancer i�1 and i, respectively. Also,
M im1 and M imðSi�1Þ

are the masses of the first and the last unbalanced masses, respectively. C1, K1 and C2, K2

are the damping and stiffness coefficients of the first and second supports, respectively. Furthermore, Ms1 and
Ms2 are the masses of the first and second supports, respectively.
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Fig. 4. Configuration of ith unbalanced mass in the Stodola–Green rotor model: (a) the configuration of the imbalance after rotation of

only ot; (b) the configurations of the other Euler angles a imi, b imi.
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In Fig. 2, Zbi determines the position of the ith ABB from the left support. Z im1 and Z imk1
are the

positions of the first and the last unbalanced masses between ABB1 and 2, and Z imð1þSi�2Þ and Z imðSi�1Þ

determine the positions of the first and the last unbalanced masses that lie between balancer i�1 and balancer i,
from the left support. In the above figure, Si�1 and Si�2 are equal to ðk1 þ k2 þ � � � þ ki�1Þ and
ðk1 þ k2 þ � � � þ ki�2Þ, respectively.

To describe the rigid-body rotations of the rotor with respect to the X- or Y-axis, it is useful to consider the
Euler angles which give the orientation of the rotor-fixed xyz coordinate system in comparison with the space-
fixed XYZ coordinate system. In this study, the Euler angles otþ pbi, abi and bbi are used for orientations of
ith ABB as shown in Fig. 3, pbi is the initial angular position of the center of mass of the ith balancer relative
to horizontal axis. In Fig. 3, Mbi and �bi are the mass and the eccentricity of the ith balancer, and rbi and ybi

describe the radial and the angular positions of the geometric center of the ith balancer. The Euler angles
otþ pIi, a imi and b imi are used for orientation of unbalanced-mass planes, as shown in Fig. 4. pIi is the
initial angular position of Cim (a point on the rotor axis, around which the ith unbalanced mass rotates)
relative to horizontal axis. M imi and li are the mass and the eccentricity of the ith unbalanced mass, and r imi

and y imi describe the radial and the angular positions of Cimi
.

A rotation through an angle otþ pbi round the Z-axis results in the primed system, i.e., the x0y0z0

coordinate system. Rotation abi about the x0-axis puts the rotor into an orientation coincident to the double
primed x00y00z00 coordinate system. Finally, a rotation of bbi around the y00-axis yields the unprimed xyz

coordinate system. These coordinate transformations can be arranged in the following matrix form:

x0 ¼ TxX; x00 ¼ Tabix
0; x ¼ Tbbix

00, (1)

where

Tx ¼

cosðotþ pbiÞ sinðotþ pbiÞ 0

� sinðotþ pbiÞ cosðotþ pbiÞ 0

0 0 1

2
64

3
75; Tabi ¼

1 0 0

0 cos abi sin abi

0 � sin abi cos abi

2
64

3
75, (2)

Tbbi ¼

cos bbi 0 � sin bbi

0 1 0

sin bbi 0 cos bbi

2
64

3
75

X ¼ X Îþ Y Ĵþ ZK̂; x0 ¼ x0i0 þ y0j0 þ z0k0; x00 ¼ x00i00 þ y00j00 þ z00k00; x ¼ xiþ yjþ zk (3)

in which Î; Ĵ and K̂ are the unit vectors along the X-, Y- and Z-axis; i0,j0 and k0 are the unit vectors along the
x0-, y0- and z0-axis; i, j and k are the unit vectors along the x-, y- and z-axis, respectively.
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First, consider the kinetic energy of the rotor system with the ABBs. The position vector of the mass center
Gi of the ith ABB can be expressed in the xyz coordinate system by using the rotation matrices,
Tx; TabiandTbbi :

rgbi ¼ TbbiTabiTxrOiCi=XYZ þ rCiGi
, (4)

where

rOiCi=XYZ ¼ rbiðcos ybi Îþ sin ybiĴÞ; rCiGi
¼ �bii. (5)

We use a new generalized coordinate cbi defined by

cbi ¼ otþ pbi � ybi. (6)

The position vector of the mass center of the ith balancer, rgbi, and the position vector of the jth ball of the ith
ABB Bij ; rbij , can be written as

rgbi ¼ ðrbiðcosðbbiÞ cosðcbiÞ � sinðabiÞ sinðbbiÞ sinðcbiÞÞ þ �biÞi

� rbi cosðabiÞ sinðcbiÞjþ ðrbiðsinðbbiÞ cosðcbiÞ

þ sinðabiÞ cosðbbiÞ sinðcbiÞÞÞk (7)

rbij ¼ ½rbiðcosðbbiÞ cosðcbiÞ � sinðabiÞ sinðbbiÞ sinðcbiÞÞ þ ri cos jbij�i

þ ð�rbi cosðabiÞ sinðcbiÞ þ ri sin jbijÞj

þ rbiðsinðbbiÞ cosðcbiÞ þ sinðabiÞ cosðbbiÞ sinðcbiÞÞk (8)

When the system has n ABBs with p balls in each ABB, the kinetic energy T1 is given by

T1 ¼
Xn

i¼1

1

2
xbTi Jbixbi þ

1

2
Mbi

dðrgbiÞ

dt

dðrgbiÞ

dt

� �
þ

1

2
m
Xn

i¼1

Xp

j¼1

dðrbijÞ

dt

dðrbijÞ

dt
(9)

where Jbi is the inertia matrix of ith ball-balancer and xbi is the angular velocity of ith ball-balancer.

Jbi ¼

Jbi 0 0

0 Jbi 0

0 0 JZbi

2
64

3
75 (10)

xbi ¼ ð�o cos abi þ a _bi cos bbiÞiþ ðo sin abi þ b _biÞjþ ðo cos abi cos bbi þ a _bi sin bbiÞk (11)

in which Jbi is the mass moment of inertia about the x- or y-axis and JZbi is the mass moment of inertia
about the z-axis. Using the same method described above the position of ith unbalanced mass is obtained as
below:

rimbi ¼ ðr imiðcosðb imiÞ: cosðc imiÞ � sinða imiÞ: sinðb imiÞ: sinðc imiÞÞ þ liÞi

� r imi cosða imiÞ: sinðc imiÞjþ ðr imiðsinðb imiÞ: cosðc imiÞ

þ sinða imiÞ: cosðb imiÞ: sinðc imiÞÞÞk (12)

where

c imi ¼ otþ pIi � y imi. (13)

The kinetic energy due to the unbalanced masses and mass of the supports is calculated simply as

T2 ¼
1

2

Xq

i¼1

M imi

dðrim biÞ

dt

dðrim biÞ

dt
þ

1

2

X2
i¼1

Msi

dðrsiÞ

dt

dðrsiÞ

dt
(14)

In the above equation, rsi (i ¼ 1,2) shows the radial position of the supports. Finally, the kinetic energy of the
system is obtained by adding Eqs. (9) and (14).

T ¼ T1 þ T2 (15)
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Neglecting the gravity and the torsional and longitudinal deflections of the shaft [11], the potential energy, or
the strain energy, is obtained from the bending deflection of the shaft. As shown in Fig. 1 the shaft has two
elastic supports, and unbalanced masses are distributed along the shaft. It is clear that the deflection curves
vary in different parts as shown in Fig. 2. For simplicity, we define a general deflection curve based on the
strength of material science and then satisfy the boundary conditions. Since one end of part 1 is on the left
support and the bending moment is zero at this point, the general deflection curve in the x-direction for this
part is

dx1 ¼ A1:Z3 þ A2:Z þ A3 (16)

where A1, A2 and A3 are parameters obtained from the boundary conditions as below:

at Z ¼ 0 fdx1 ¼ dsx1

at Z ¼ zb1

dx1 ¼ dbx1

d=dZðdx1Þ ¼ pby1

(
(17)

In the above equations, pby1, dsx1 and dbx1 are slope at Z ¼ Zb1 and the deflections at Z ¼ 0 and Z ¼ Zb1
in the ZX-plane, respectively. Similarly, the deflection curve in the y-direction for this part is

dy1 ¼ A1nZ3 þ A2nZ þ A3 (18)

where

at Z ¼ 0 fdy1 ¼ dsy1

at Z ¼ zb1

dy1 ¼ dby1

d=dZðdy1Þ ¼ �pbx1

(
(19)

pbx1, dsy1 and dby1 are slope at Z ¼ Zb1 and the deflections at Z ¼ 0 and Z ¼ Zb1 in the ZY-plane,
respectively. The same relations mentioned above can be obtained for the last part as follows:

dxnþqþ1 ¼ A1nðZ � LÞ3 þ A2nðZ � LÞ þ A3 (20)

where

at Z ¼ zbn

dxnþqþ1 ¼ dbxn

d=dZðdxnþqþ1Þ ¼ pbyn

(

at Z ¼ L fdxnþqþ1 ¼ dsx2 (21)

and

dynþqþ1 ¼ A1nðZ � LÞ3 þ A2nðZ � LÞ þ A3 (22)

where

at Z ¼ zbn

dynþqþ1 ¼ dbyn

d=dZðdynþqþ1Þ ¼ �pbxn

(
(23)

at Z ¼ L fdynþqþ1 ¼ dsy2

For other parts shown in Fig. 2, the general deflection curve in the ZX- and ZY-plane is

dx; yi ¼ A1:Z3 þ A2:Z2 þ A3:Z þ A4; 2pipnþ q (24)

where A1, A2, A3 and A4 are the parameters defined from boundary conditions and index i indicates the
number of parts. In the relations described above for the deflection curve of the shaft, geometric relations
between parameters are as follows:

dsxi ¼ rsi cosðysiÞ; i ¼ 1; 2
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dsyi ¼ rsi sinðysiÞ; i ¼ 1; 2 (25)

dbxi ¼ rbi cosðybiÞ; i ¼ 1; . . . ; n

dbyi ¼ rbi sinðybiÞ; i ¼ 1; . . . ; n

pbyi ¼ abi sinðotþ pbiÞ þ bbi cosðabiÞ cosðotþ pbiÞ; i ¼ 1; . . . ; n

pbxi ¼ abi cosðotþ pbiÞ � bbi cosðabiÞ sinðotþ pbiÞ; i ¼ 1; . . . ; n (26)

d imxi ¼ r imi cosðy imiÞ; i ¼ 1; . . . ; q

d im yi ¼ r imi sinðy imiÞ; i ¼ 1; . . . ; q

p imyi ¼ a imi sinðotþ pIiÞ þ b imi cosða imiÞ cosðotþ pIiÞ; i ¼ 1; . . . ; q

p imxi ¼ a imi cosðotþ pIiÞ � b imi cosða imiÞ sinðotþ pIiÞ; i ¼ 1; . . . ; q (27)

In the above, dsxi and dsyi are the deflections of the shaft at the ith support in the x and y directions,
respectively. In relation (25), ysi (i ¼ 1,2) shows the angular position of supports. Also, dbxi and dbyi are the
deflections of the shaft at the centroid of the ith ABB in the x and y directions, respectively. Furthermore, pbxi

and pbyi are the slopes at the centroid of the ith ABB, in the zy- and zx-planes, respectively. The deflection
and slope of the point on the shaft that determine the position of ith unbalance mass, Cim, in the ZX- and
ZY-planes are as relations (27). n and q are the number of ABBs and unbalanced masses, respectively. Finally,
after defining these coefficients i.e., A1, A2, A3 and A4 for each part, we can obtain the strain energy of the
system as below:

V 1 ¼
1

2
EI

Pn
q¼2

PPq�1

j¼1
kj

i¼
Pq�1

j¼1
kj�1þ2

RZ imi

Z imi�1

q2ðdxiþq�1Þ

qZ2

� �2
þ

q2ðdyiþq�1Þ

qZ2

� �2� �
dZ

þ
Pn
i¼2

RZ imSi�2þ1

Zbi�1

q2ðdxSi�2þiÞ

qZ2

� �2
þ

q2ðdxSi�2þiÞ

qZ2

� �2� �
dZ

� �

þ
Pn
i¼2

RZbi

Z imSi�1

q2ðdxSi�1þiÞ

qZ2

� �2
þ

q2ðdxSi�1þiÞ

qZ2

� �2� �
dZ

� �

þ
RZb1
0

q2ðdx1Þ

qZ2

� �2
þ

q2ðdy1Þ

qZ2

� �2� �
dZ þ

R L

Zbn

q2ðdxSn�1þ1
Þ

qZ2

� �2
þ

q2ðdySn�1þ1
Þ

qZ2

� �2
 !

dZ

2
666666666666666664

3
777777777777777775

where

Si�1 ¼ k1 þ k2 þ � � � þ ki�1,

Si�2 ¼ k1 þ k2 þ � � � þ ki�2,

Sn�1 ¼ k1 þ k2 þ � � � þ kn�1. (28)

In the above, E is Young’s modulus and I is the area moment of inertia of the shaft cross-section.
The potential energy of the system due to the linear springs in the supports is

V 2 ¼
1
2
ðK1ðdsx2

1 þ dsy2
1Þ þ K2ðdsx2

2 þ dsy2
2ÞÞ (29)

The total potential energy of the system is

V ¼ V 1 þ V2 (30)
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Furthermore, Rayleigh’s dissipation function, F, can be represented by

F ¼
1

2

Xn

i¼1

ðctiðr _b
2

i þ rb2
i � y _b

2

i Þ þ criða _b
2

i þ b _b
2

i ÞÞ þ
1

2

X2
i¼1

Ciðr_s
2
i þ rs2i y_s

2
i Þ þ

1

2

Xn

i¼1

Xp

j¼1

Di � p _b
2

ij (31)

where cti is the equivalent damping coefficient for translation of the ith ABB, cri is the equivalent
damping coefficient of rotation of ith ABB, and Di is the viscous drag coefficient of the ball in the
damping fluid of the ith ABB. It is assumed that the balls in each balancer have the same viscous drag
coefficient of Di.

The equations of motion for the system are derived by Lagrange’s equation given by

d

dt

qT

q _qk

� �
�

qT

qqk

þ
qV

qqk

þ
qF

q _qk

¼ 0 (32)

where qk is the generalized coordinate. For the given system, the generalized coordinates are

frsi;csii ¼ 1; 2g; frbi;cbi; abi;bbi;jbij i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; pg,

fr imi;c imi; a imi;b imi i ¼ 1; 2; . . . ; qg (33)

Therefore, the dynamic behavior of the balancer is governed by 4ðnþ qÞ þ npþ 4 independent equations of
motion. Substituting Eqs. (15), (30) and (31) into Eq. (32) yields the equations of motion. The derived
equations are so long and complex that they cannot be represented in this paper. The whole process of the
derivation of the equations of motion is computerized using Matlab and Maple softwares, and the derived
equations are saved as text files. The information of these text files are used for extracting the equilibrium
positions and linearized equations of motion.

3. Equilibrium positions and linearized equations

The equations of motion derived in the previous section can be described as below:

Gðx; _x; €xÞ ¼MðxÞ €xþNðx; _xÞ ¼ 0 (34)

where M is the mass matrix, N is the nonlinear internal force vector, and x is the displacement vector:

x ¼ frsi;csi; rbj ;cbj ; abj ;bbj ;jjl ; r imt;c imt; a imt;b imtg
T

i ¼ 1; 2

j ¼ 1; 2; . . . ; n ðn ¼ number of auto ball-balancersÞ

l ¼ 1; 2; . . . ; p ðp ¼ number of balls in each auto ball-balancersÞ

t ¼ 1; 2; . . . ; q ðq ¼ number of unbalance massesÞ

8>>>><
>>>>:

(35)

The stability analysis for a non-autonomous system is very cumbersome and a time consuming process. By
substituting the relations below into the derived equations of motion, the equations of motion for an
autonomous system can be achieved.

csi ¼ ot� ysi; i ¼ 1; 2

cbi ¼ ot� ybi; i ¼ 1; 2; . . . ; n

c imi ¼ ot� y imi; i ¼ 1; 2; . . . ; q (36)

The state equations can be used clearly for stability analysis, utilizing the notations:

_rsi ¼ rŝi; _csi ¼ cŝi;

_rbj ¼ rb̂j ; _cbj ¼ cb̂j ; _abj ¼ ab̂j ; _bbj ¼ bb̂j ; _jjl ¼ ĵjl ;

r _imt ¼ r îmt; _c imt ¼ ĉ imt; a _imt ¼ a îmt; b _imt ¼ b îmt;

8>><
>>:

9>>=
>>;
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where

i ¼ 1; 2

j ¼ 1; 2; . . . ; n ðn ¼ number of ball-balancersÞ

l ¼ 1; 2; . . . ; p ðp ¼ number of balls in each balancerÞ

t ¼ 1; 2; . . . ; q ðq ¼ number of unbalance massesÞ

8>>>><
>>>>:

(37)

The equations of motion can be expressed as follows:

AðxÞ _x ¼ NðxÞ (38)

where

x ¼
rsi;csi; rbj ;cbj ; abj ;bbj ;jjl ; r imt;c imt; a imt;b imt;

r̂si; ĉsi; r̂bj ; ĉbj ; âbj ; b̂bj ; ĵjl ; r îmt; ĉ imt; a îmt;b îmt

( )T

(39)

The indexes i, j, l and t are determined from the relation (37). The perturbation method is used to obtain
linearized equations of motion in the neighborhood of the equilibrium positions. The generalized coordinates
(33) can be represented by

rsi ¼ rs�i þ Drsi; csi ¼ cs�i þ Dcsi; i ¼ 1; 2

rbi ¼ rb�i þ Drbi; cbi ¼ cb�i þ Dcbi; abi ¼ ab�i þ Dabi; bbi ¼ bb�i þ Dbbi; jij ¼ j�ij þ Djij

ði ¼ 1; 2; . . . n and j ¼ 1; 2; . . . ; pÞ

r imi ¼ r im�i þ Dr imi; c imi ¼ c im�i þ Dc imi; a imi ¼ a im�i þ Da imi; b imi ¼ b im�i þ Db imi

ði ¼ 1; 2; . . . ; qÞ (40)

For simplicity the relations (40) can be rewritten as below:

x ¼ x� þ Dx (41)

where the starred parameters are the coordinates of an equilibrium position and the parameters with D are the
small perturbations of the generalized coordinates in the neighborhood of the equilibrium position. Generally,
the equilibrium positions may be classified into two cases: balanced and unbalanced. In the first case, it is
respected that all the radial displacements and angle deviations converge to zero and angular position of the
balls are definite quantities. In the second case all the quantities are non-zero. It is clear that ideal results are
obtained in the first case, but in the system of an unbalanced rotating shaft equipped with n ball-balancer, the
balanced equilibrium position does not exist. In order to determine the positions for the unbalanced case, it
needs to substitute the relation (42) into the equations of motion in the state space (38).

_x ¼ 0 (42)

This substitution leads to a set of nonlinear equations, i.e., Nðx�Þ ¼ 0, where x* shows the equilibrium
positions. Obviously these set of equations do not have any closed form solution and only the numerical
methods must be employed. So, the equilibrium positions cannot be defined parametric. Matlab software is a
suitable solution for this problem. Authors wrote a program whose output is the equilibrium positions.

In order to obtain the linear variational equations of motion, Eq. (38) is linearized in the neighborhood of
the equilibrium positions. Substituting Eq. (41) into Eq. (38) yields the following:

Aðxn þ DxÞD _x ¼ Nðxn þ DxÞ (43)

which may be rewritten as below:

Aðxn þ DxÞD _x ¼ Nðxn þ DxÞ �NðxnÞ (44)

Expanding the above equation about Dx ¼ 0, the following equation is achieved:

AnD _x ¼ BnDxþOðDxÞ (45)

In the above equation A* and B* are constant and O is a function of the second order of Dx or higher. If Dx is
sufficiently small, then O(Dx) can be neglected and as such, the linearized equations of motion about the
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equilibrium positions are obtained as below:

AnD _x ¼ BnDx (46)

where

A� ¼
I 0

0 M

� �
; B� ¼

0 I

K� C�

� �
(47)

I, M are identity and mass matrices of order 4ðnþ qÞ þ npþ 4, respectively.
K* and C* in relation (47) are as follows:

K� ¼

�
qF 1

qX 1
�
qF1

qX 2
� � � �

qF 1

qX 4ðnþqÞþnpþ4

�
qF 2

qX 1
�
qF2

qX 2
� � � �

qF 2

qX 4ðnþqÞþnpþ4

..

. ..
. ..

. ..
.

�
qF4ðnþqÞþnpþ4

qX 1
�
qF 4ðnþqÞþnpþ4

qX 2
� � � �

qF4ðnþqÞþnpþ4

qX 4ðnþqÞþnpþ4

2
666666666664

3
777777777775

(48)

C� ¼

�
qF 1

qY 1
�
qF1

qY 2
� � � �

qF 1

qY 4ðnþqÞþnpþ4

�
qF 2

qY 1
�
qF2

qY 2
� � � �

qF 2

qY 4ðnþqÞþnpþ4

..

. ..
. ..

. ..
.

�
qF4ðnþqÞþnpþ4

qY 1
�
qF 4ðnþqÞþnpþ4

qY 2
� � � �

qF4ðnþqÞþnpþ4

qY 4ðnþqÞþnpþ4

2
666666666664

3
777777777775

(49)

In the above couple of matrices, F1;F 2; . . . ;F4ðnþqÞþnpþ4 are the 4ðnþ qÞ þ npþ 4 equations which are
obtained from Nðx�Þ ¼ 0. Also, X 1;X 2; . . . ;X 4ðnþqÞþnpþ4 and Y 1;Y 2; . . . ;Y 4ðnþqÞþnpþ4 are the first and second
4ðnþ qÞ þ npþ 4 elements of vector x in relation (39).

It must be noted that Eq. (46) is valid only in the neighborhood of the equilibrium positions.
4. Stability analysis

The stability of the system is analyzed with linearized equations of motion in the neighborhood of the
equilibrium position. For simplicity, it is assumed that the number of ball-balancers and unbalanced masses
are 1 and 2, respectively, i.e., n ¼ 2 and q ¼ 1. Also, there are two balls in the groove of each ball-balancer.
The mass moments of inertia Jbi and JZbi are given by

Jbi ¼
1
4
MbiR

2
i ; JZbi ¼

1
2
MbiR

2
i (50)

Mbi and Ri are the mass and radius of the ith ball-balancer.
Stability analysis can be investigated utilizing the characteristic value problem for Eq. (46).
Small perturbations of the generalized coordinates from the equilibrium position can be written as

Drsi ¼ X rsi
elt; Dcsi ¼ Xcsi

elt; Drbj ¼ X rbj
elt; Dcbj ¼ Xcbj

elt,

Dabj ¼ X abj
elt; Dbbj ¼ Xbbj

elt; Djjl ¼ Xjjl
elt; Dr imt ¼ X r imt

elt,

Dc imt ¼ Xc imt
elt; Da imt ¼ X a imt

elt; Db imt ¼ X b imt
elt (51)
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Table 1

System parameters.

Parameters Value Description

E 207GPa Elasticity modules

rShaft 20mm The radius of the shaft

L 2m The length of the shaft

o 300 rad s�1 Angular velocity of the shaft

Ms1, Ms2 1 kg The mass of the supports

Mb1 ¼Mb2 12 kg The mass of the auto ball-balancers

R1 ¼ R2 0.12m The radius of the auto ball-balancers

zb1 L/4m The position of the first auto ball-balancer relative to fixed coordinate system

zb2 3L/4m The position of the second auto ball-balancer relative to fixed coordinate system

eb1 ¼ eb2 0.000001m Eccentricity of the auto ball-balancers

D1 ¼ D2 3.6Nm s2 Viscous damping coefficient

mb11 ¼ mb12 ¼ mb21 ¼ mb22 510 g The mass of freely moving balls

z im1 L/2m The position of unbalanced mass relative to fixed coordinate system

l1 0.1m Vertical distance of unbalanced mass from axis of the shaft

m im1 1.9 kg Mass of unbalancing

C1 ¼ C2 0.03Nms�1 Damping coefficient of supports

K1 ¼ K2 50Nmm�1 Stiffness coefficient of supports
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where,

i; j; l ¼ 1; 2 and t ¼ 1 (52)

Substituting the above into the linearized equations of motion leads to the following equation:

jBn � lAn
j ¼ 0 (53)

This is the condition that equations in (46) have non-trivial solutions and can be expressed as the
characteristics equation as below:

X40
k¼0

ckl
k
¼ 0 (54)

where the coefficients ck ðk ¼ 0; 1; . . . ; 40Þ are functions of the system parameters, such as
o; rShaft;L;C1;C2;K1;K2 and y. Since the coefficients ck are complicated functions of the system parameters,
the explicit expressions are omitted from this paper.

The Routh–Hurwitz criteria are used to investigate stability of the system of auto ball-balancers. If all the
eigenvalues, namely, the roots of Eq. (54), have negative real parts, the system of ball-balancers is asymptotically
stable. The Routh–Hurwitz criteria provide the necessary and sufficient conditions for the real parts of all roots to be
negative. The parameters in Table 1 are used for stability analysis and calculating the natural frequencies of the system.

Denoting the natural frequencies of the system without balls by o1;o2; . . . ;o8, these natural frequencies can
be obtained from

ms1 0 0 0 0 0 0 0

0 Mb1 0 0 0 0 0 0

0 0 J1 0 0 0 0 0

0 0 0 m im1 0 0 0 0

0 0 0 0 J im 0 0 0

0 0 0 0 0 Mb2 0 0

0 0 0 0 0 0 J2 0

0 0 0 0 0 0 0 Ms2

2
666666666666666664

3
777777777777777775

r€s1

r €b1

a €b1

r i €m1

a i €m1

r €b2

a €b2

r€s2

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;
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Fig. 5. Balanced stable region: (a) variation of angular velocity in terms of the max. Real eigenvalues of the characteristic equation,

(b) variation of the internal damping (fluid damping) in terms of the angular velocity.
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þ
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Fig. 5a shows that the stability in the neighborhood of the equilibrium position is guaranteed when the
rotating speed o is greater than the first natural frequency o1 of the rotating shaft. However, it seems that the
other natural frequencies o2, o3 and y are irrelevant to the stability of the system. Fig. 5b shows the effect of
the fluid damping on the stability of the system. Obviously, it shows that the system is not able to achieve the
partial balancing if D ¼ 0. This means that the fluid damping D is an important factor for balancing.
5. Time responses

Time responses of the given system are investigated to verify the stability of the system and to analyze the
dynamic behavior. From the nonlinear equations of motion obtained from Eq. (32), the time responses are
computed by the generalized-a time integration method [23]. When the number of ball-balancers and
unbalanced masses are 2 and 1, respectively, i.e., n ¼ 2 and q ¼ 1, the nonlinear equations may be expressed
by the relations (34) and (35). Note that in the relations (34) and (35) the mass matrix M is a function of the
displacement vector x while the internal force vector N is a function of the displacement vector x and the
velocity vector _x. The material properties and dimensions for computation of time responses are given in
Table 1. The mass moments of inertia Jbi and JZbi are given by Eq. (50). Time responses are computed for
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two cases. First the system without balls is considered and finally the dynamic analysis is done for the same
system equipped with two ball-balancers. In these two cases, the angular velocity ratio, o/o1, is 5 where o1 is
the first natural frequency of the system. The initial conditions are given in Table 2.

Figs. 6a–c clearly show the unwanted vibrations for radial displacements rs1, rb1 and r im1, respectively.
Obviously, the use of a balancing mechanism is necessary for minimizing the vibrations. This aim can be
achieved employing the auto balancing technique.
Table 2

Initial values of parameters.

Parameter Initial value at t ¼ 0

rs1 (mm) 0.00001

rb1 (mm) 0.00001

ab1 (deg) 0

bb1(deg) 0

j11 (deg) 0

j12 (deg) p
r im (mm) 0.00001

a im (deg) 0

b im (deg) 0

rs1 Versus time

rb1 Versus time

rim Versus time×10-2

0.00000
0.46000

-0.92000
-1.38000
-1.84000
-2.30000
-2.76000
-3.22000
-3.68000
-4.14000

0.0000 0.3400 0.6800 1.0200 1.3600

×100

×100

sec

×10-2

×10-2 m

3.80000
3.51000
3.12000
2.73000
2.34000
1.95000
1.56000
1.17000
0.78000
0.39000
0.00000

0.0000 0.3400 0.6800 1.0200 1.3600 ×100

sec
0.0000 0.3400 0.6800 1.0200 1.3600

sec

3.70000
3.42000
3.04000
2.66000

2.28000
1.90000

1.52000

1.14000
0.76000
0.38000
0.00000

m m

m

Fig. 6. Time responses of the system without balls when o/o1 ¼ 5: (a) the radial displacement, rs1; (b) the radial displacement, r im1;

(c) the radial displacement, rb1.
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rs1 Versus time rim Versus time×10-2 ×10-2

0.00000
-0.44000
-0.88000
-1.32000
-1.76000
-2.20000
-2.64000
-3.08000
-3.52000
-3.96000

0.0000 0.3400 0.6800 1.0200 1.3600
×100 ×100

sec
0.0000 0.3400 0.6800 1.0200 1.3600

sec

m m

3.70000
3.42000
3.04000
2.66000
2.28000
1.90000
1.52000
1.14000
0.76000
0.38000
0.00000

Fig. 7. Time responses of the first support position when o/o1 ¼ 5, the rest of the parameters are as Table 1: (a) the radial displacement,

rs1 (b) the radial displacement, r im1.
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It must be noted that this method is not able to balance the system perfectly in all the cases. When the
unbalanced point masses are in the planes of the auto ball-balancers, all the vibration amplitudes converge to
zero, i.e., the perfect balancing. However, by using this method the vibration behavior of the system can be
improved strongly. Figs. 7 and 8 show the time responses for a system equipped with two ABBs; material
properties and geometric dimensions are given in Table 1.

Fig. 5 shows that the rotating speed o=o1 ¼ 5 is in the stable region; therefore, the ball-balancers perform
their duty, i.e., minimizing the unwanted vibration of the system and Fig. 8 confirming the stability analysis.
However, for rotating speeds of o=o1p1 the auto ball-balancers do not have any positive effect on the
improvement of the vibration behavior of the system.

Fig. 8b shows the time responses of the ball-positions for the first auto ball-balancer, because of the
symmetry there is the same situation for the balls of the second auto ball-balancer. These two graphs show
that the four balls of the auto ball-balancers are in the opposite side of the unbalanced mass and in the
specified positions as Table 3.

Table 3 demonstrates the converged values of the variable parameters before and after auto balancing. As
mentioned before, because of the symmetry of the system, only the results for the first auto ball-balancer and
support have been presented.

A criterion is needed for doing a comparison between the vibration behaviors of the system without auto
ball-balancers and equipped with the balancing instruments. For this reason, the summation of amplitude
squares of rs1, rb1 and r im1 is considered as a target function. It is clear that smaller values of target function
cause a better vibration behavior. Using the numerical results of Table 3, the values of the target function for
the system with and without auto ball-balancers are 185.5 and 434.3, respectively. The reduction in the value
of the target function from 434.3 to 185.5 shows a good improvement in the vibration behavior of the system.

Fig. 9 shows that the closer the ABBs are to the location of the unbalanced mass, the better vibration
behavior of the system is, i.e., the value of the target function is smaller. Using Table 4, these values are 1492.5,
33.5 and 0 for the cases (a), (b) and (c) in Fig. 9, respectively. Figs. 9c and 10 indicate that if the unbalanced
mass is in the planes of auto ball-balancers the perfect balancing is achieved, i.e., the value of the target
function is zero. So, this figure indicates the importance of the ball-balancers’ positions. It is clear that
specifying the accurate positions of the imbalances in a system is not possible or at least is a difficult problem.
However, using this balancing mechanism, we would be able to minimize the vibrations of the system without
knowing the exact positions of the unbalanced masses.

6. Conclusions

In this paper, dynamic stability and time responses are analyzed for a system of unbalanced flexible rotating
shaft equipped with n automatic balancers. Also, the system lies on two linear elastic supports. This study
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Table 3

Converged values of variable parameters before and after auto balancing, the material properties and dimensions for computation of time

responses are given by Table 1.

Parameter Converged values before auto balancing Converged values after auto balancing

rs1 (mm) �18.98 �11.5

rb1 (mm) 7.7 0.045

j11 (deg) – �139

j12 (deg) – 152

r im (mm) 3.84 7.3

rb1 Versus time×10-2

×102 ×102

×100

3.60000
3.33000
2.96000
2.59000

2.22000
1.85000

1.48000

1.11000
0.74000
0.37000
0.00000

0.0000 0.3400 0.6800 1.0200 1.3600
sec

×100
0.0000 0.3400 0.6800 1.0200 1.3600

sec

×100

0.0000 0.3400 0.6800 1.0200 1.3600
sec

0.10000
0.00000

-0.16000
-0.32000
-0.48000
-0.64000
-0.80000
-0.96000
-1.12000
-1.28000

-1.44000

m

D
eg

re
e

D
eg

re
e

1.90000
1.85000
1.80000
1.75000
1.70000
1.65000
1.60000
1.55000
1.50000
1.45000

pb11 Versus time pb12 Versus time

(a)

(b) (c)

Fig. 8. Time responses of the automatic ball-balancers when o/o1 ¼ 5, the rest of the parameters are as Table 1: (a) the radial

displacement, rb1; (b) the ball positions f11;f12.
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adopts the Stodola–Green rotor model to consider the rigid-body rotations due to shaft flexibility
instead of Jeffcott rotor model. The nonlinear equations of motion are derived for an autonomous
system considering the ball-balancer of Stodola–Green rotor, utilizing the perturbation method, an
equilibrium position and the linearized equations are obtained. Furthermore, the stability analysis is
performed using the Routh–Hurwitz criteria. Moreover, time responses are investigated for the nonlinear
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rim Versus time

rim Versus time

rb1 Versus time

rb1 Versus time

x10-2 x10-2

x10-2 x10-2

rim Versus time rb1 Versus timex10-2 x10-2

m m
m

5.70000
5.22000
4.64000
4.06000
3.48000
2.90000
2.32000
1.74000
1.16000
0.58000
0.00000

0.0000 0.3400 0.6800 1.0200 1.3600 ×100
×100×100

3.50000
3.24000
2.88000
2.52000
2.16000
1.80000
1.44000
1.08000
0.72000
0.36000

0.0000

0.0000 0.3400 0.6800 1.0200 1.3600
secsec

0.3400 0.6800 1.0200 1.3600 ×100 ×100
0.0000 0.3400 0.6800 1.0200 1.3600

secsec

0.0000 0.3400 0.6800 1.0200 1.3600
×100 ×100

0.0000 0.3400 0.6800 1.0200 1.3600
secsec

3.80000
3.51000
3.12000
2.73000
2.34000
1.95000
1.56000
1.17000
0.78000
0.39000

0.0000

m
m m

3.80000
3.51000
3.12000
2.73000
2.34000
1.95000
1.56000
1.17000
0.78000
0.39000

0.0000

3.90000
3.60000
3.20000
2.80000
2.40000
2.00000
1.60000
1.20000
0.80000
0.40000

0.0000

3.90000
3.60000
3.20000
2.80000
2.40000
2.00000
1.60000
1.20000
0.80000
0.40000

0.0000

Fig. 9. Time responses of the radial displacements of the unbalanced mass and the automatic ball-balancers when o/o1 ¼ 5:

(a) zb1 ¼ 0:2; zb2 ¼ 1:8; (b) zb1 ¼ 0:7; zb2 ¼ 1:3; (c) zb1 ¼ zb2 ¼ 1.
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equations of motion using the generalized-a method. The results of this study may be summarized as
follows:
(1)
 To obtain the partial balancing, the rotating speed should be more than the first natural frequency.

(2)
 The auto ball-balancers tend to minimize the vibration behavior only in the case of which the system

parameters are in the stability region for the equilibrium position.
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Table 4

Converged values of the variable parameters after auto balancing, the material properties and dimensions for computation of time

responses are given by Table 1.

Parameter Converged values before auto

balancing zb1 ¼ 0.2, zb2 ¼ 1.8

Converged values after auto

balancing zb1 ¼ 0.7, zb2 ¼ 1.3

Converged values after auto

balancing zb1 ¼ zb2 ¼ 1

rs1 (mm) �14 �5.6 0

rb1 (mm) 0.65 0.0082 0

j11 (deg) �155.7 �138.94 �140.8

j12 (deg) 168.4 145.84 141

r im (mm) 36 1.47 0

rs1 Versus time×10-2

3.20000
2.97000
2.64000
2.31000

1.98000
1.65000

1.32000
0.99000
0.66000

0.33000
0.0000

0.3400 0.6800 1.0200 1.3600
sec

×100

m

Fig. 10. Time response of the radial displacement of the first support when o/o1 ¼ 5, zb1 ¼ zb2 ¼ 1.
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(3)
 Closer distance between auto ball-balancers and unbalance masses leads to better vibration behavior of the
system.
(4)
 The complete balancing is obtained when all the unbalanced masses are in the planes of the auto ball-
balancers.
(5)
 The fluid damping coefficient D is one of the essential parameters to gain balancing.
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